Thermal Behaviour of Dipolarophile-containing Acyl Azides: Intramolecular Cycloaddition *versus* Curtius Rearrangement

J. Chem. Research (S), 1998, 688–689 J. Chem. Research (M), 1998, 2801–2812

Gianluigi Broggini, Luisa Garanti, Giorgio Molteni* and Gaetano Zecchi

Dipartimento di Chimica Organica e Industriale dell'Università and Centro CNR, Via Golgi 19, 20133, Milano, Italy

The thermal reaction of a series of alkynyl- or alkenoyl-containing acyl azides involves competition between intramolecular azide cycloaddition and Curtius rearrangement.

As a part of our research dealing with intramolecular azide cycloadditions,³ we were interested in examining the behaviour of acyl azides 2 and 7 to establish the degree of competition between intramolecular cycloaddition and Curtius rearrangement. The choice of such thiophene-based substrates was dictated by the fact that the thieno-[2,3-f][1,2,3]triazolo[5,1-c][1,4]diazepine skeleton, which is

Scheme 1 Reagents and conditions: i, K_2CO_3 , BTAC, acetone, heat; ii, KOH, MeOH, heat; iii, EtOCOCI, acetone, 0 °C; iv, NaN_3 , 0 °C; v, toluene, heat

unreported in the literature, could represent a valuable target in medicinal chemistry, owing to its structural similarity with some anxiolytic drugs.⁴

Scheme 2 Reagents and conditions: i, Et₃N, toluene, heat; ii, Mel, K_2CO_3 , BTAC, acetone, heat; iii, KOH, MeOH, heat; iv, EtOCOCI, acetone, $0\,^{\circ}C$; v, NaN_3 , $0\,^{\circ}C$; vi, toluene, heat

Table 1 Thermal reaction of acyl azides 2 and 7^a

Compd.	Time (t/h)	Product yield (%)				
		3	4	8	9	Eluent
2a	8	60	10	_	_	Et ₂ O
2b	4	0	85	_	_	AcOEt-Light petroleum ^b (2:1)
2c	5	30	40	_	_	Et ₂ O
7a	3	_	_	30	10	Et ₂ O
7b	4	-	_	0	75	AcOEt-Light petroleum ^b (4:1)
7c	3	-	_	0	95	-

^aBoiled under reflux in toluene solution (0.05 M). ^bBp 40-60 °C.

^{*}To receive any correspondence.

Heat treatment of acyl azides 2 and 7, synthesized as depicted in Schemes 1 and 2, was carried out in boiling toluene. Reaction times, products, eluents and yields are summarized in Table 1.

Our results shows that the substituent R plays a key role in determining the competition between the two possible routes. The intramolecular cycloaddition pathway actually predominates over the Curtius rearrangement if R = H. Steric encumbrance owing to R hinders the intramolecular approach of the reactive π systems in parallel planes that is required for concerted cycloadditions. ¹¹ Consequently, the powerful driving force exerted by the loss of molecular nitrogen makes the Curtius rearrangement the main or exclusive pathway for R other than H.

Techniques used: IR, ¹H NMR, mass spectrometry, elemental analysis

References: 11

Schemes: 2

Table 2: Characterisation of compounds 3, 4, 8 and 9

Received, 20th April 1998; Accepted, 30th June 1998 Paper E/8/02931H

References cited in this synopsis

- 3 (a) L. Garanti, G. Molteni and G. Zecchi, Heterocycles, 1994, 38, 291; (b) G. Broggini, G. Molteni and G. Zecchi, Synthesis, 1995, 647; (c) G. Broggini, L. Garanti, G. Molteni and G. Zecchi, *J. Chem. Res.*, 1997, (S) 380; (M) 2215.
- 4 (a) A. Waltser, T. Flynn, C. Mason, H. Crowley and B. Yaremko, *J. Med. Chem.*, 1991, **34**, 1209; (b) A. Waltser, T. Flynn, C. Mason, H. Crowley, C. Maresca and M. O'Donnell, J. Med. Chem., 1991, 34, 1440.
- 11 R. Huisgen, in 1,3-Dipolar Cycloaddition Chemistry, ed. A. Padwa, Wiley-Interscience, New York, 1984, ch. 1.